
Journal of Statistical Physics, VoL 30, No. 2, 1983 

Random Walk of Dislocations Following a 
High-Velocity Impact 

Bruce J. West  ~ and Michael F. Shlesinger ~'2 

The permanent distortion of an elastic material due to a shock wave generated 
by a high-velocity impact is modeled by a random walk of dislocations. The 
dislocation movement is inhibited by a spatial and energetic distribution of 
activation barriers. The dislocations also experience a radially outward stress 
bias from the point of impact. The experimentally observed scaling of the total 
integrated momentum as well as the scaling with time of the penetration 
distance and strength of the shock wave are obtained in this model. 

KEY WORDS: Biased random walk; dislocations; scaling; irreversible 
deformation. 

1. I N T R O D U C T I O N  

R a n d o m  walk  mode l s  have  been  highly successful  in descr ib ing  charge  
t r anspor t  in a m o r p h o u s  mater ia l s  p r o b e d  via t ime-of-f l ight  exper iments .  (1,2) 

The  t r anspor t  is charac te r ized  b y  a cha rged  current  which decays  a lgebra-  
ical ly  in time, even though the sample  is p l aced  in a high electr ic field. 
Ins t ead  of hav ing  a wel l -def ined t ransi t  t ime through  the sample  (usual ly  of 
the o rder  of mil l iseconds)  a s teadi ly  decreas ing  cur ren t  persists for  minutes  
or longer.  This unusua l  t ime dependence  can  be  genera ted  by  a h ighly  
n o n - G a u s s i a n  s tochast ic  process  which  represents  a r a n d o m  walk  in a 
r a n d o m  medium.  Var ious  scal ing laws and  a universa l  behav io r  arise f rom 
this mode l  in agreement  with exper iments .  
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We present a similar random walk model for the formation of a 
distortion of a material following a high-velocity impact. A permanent 
distortion will form in a matter of tens of microseconds. Even in this short 
time span the damage can be separated into an early stage (roughly 
coinciding with the formation of a crater) and a late stage plastic flow. (3) 
An important feature is that the late stage flow will grow with a velocity 
which decreases algebraically with time, thus allowing a mathematical 
analogy to the charge transport in amorphous materials. The growth of the 
distortion will be related to a conservation law which is neither that of 
energy nor momentum. In Section 2 we review the phenomena of damage 
due to high-velocity impacts, and we present and analyze a random walk 
model in Section 3. In Section 4 we compare our scaling results with 
experiments. 

2. THE P H E N O M E N A  

An example of a high-velocity impact is a small meteorite striking a 
satellite. Obviously, a theory of the damage incurred as a function of the 
mass, speed, and angle of incidence of the projectile would be welcome. 
Unfortunately, the physical mechanisms governing the generation and 
propagation of damage in elastic materials due to high-velocity impacts are 
not yet understood. However, a number of useful phenomenological rela- 
tions have been found, despite the fact that the appropriate macroscopic or 
microscopic equations for irreversible damage are not known. (3) 

It is experimentally well established that the high-velocity impact of a 
hard projectile on a hard target (e.g., steel on steel) can result in both 
materials undergoing severe distortion with melting sometimes occurring. A 
hemispherical crater is formed on the target surface for normal incidence 
scattering. In the formation of the crater, target material is ejected away 
from the target as well as being convected into the target to form a shock 
wave. The speed of the shock exceeds the sound speed of the material. With 
the passage of the shock the material adjusts itself into a permanently 
deformed configuration. When the shock is weakened enough to become 
an elastic wave the plastic flow of the material ceases. 

Using macroscopic concepts, experimental data, and large-scale com- 
puter calculations one describes the crater depth, D, via 

D _ K(  Op Vo 
Co (1) 

where L 3 is proportional to the projectile mass M, pp and p~ are the 
projectile and target mass densities, % is the projectile's initial velocity, Co is 
the material's sound velocity, and K characterizes the strength of the target. 
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An ~ = 2 /3  would arise from energy conservation, i.e., if the crater volume 
was proportional to the initial kinetic energy of the projectile. The experi- 
mental value of a is approximately 0.58 for steel-on-steel collisions. 

One does not expect momentum conservation (a = 1/3) for just the 
target because material is thrown backward resulting in a final momentum 
deposition in the target that can be many times larger than the incident 
projectile momentum. The ratio r of target to projectile momentum is 
found to scale as 

r = (const)v03~-1 (2) 

Equations (1) and (2) will be shown to be consistent with the conservation 
law 

M v  3~ = const (3) 

This implies that as long as Eq. (3) is valid projectiles with different M 
and v 0 values will cause equal damage. 

3. THE MODEL: RANDOM WALK OF D ISLOCATIONS 

3.1. Physical Concepts 

The strategy we now employ is to examine a simple microscopic model 
of the elastic and plastic properties of metal targets to provide a theoretical 
underpinning for Eqs. (1)-(3). Metals are composed of grains approxi- 
mately 0.025 cm in linear extent. Each grain is a single crystal, and a 
macroscopic piece of metal consists of an agglomeration of randomly 
oriented crystals joined along an irregular honeycomb of common bounda- 
ries. In addition to grain boundaries there are dislocations, disinclinations, 
and combinations of both, such as screw dislocations. Dislocations break 
translational symmetry and allow atomic planes to slip when subject to a 
sufficient stress. In metals the number of dislocations is of the order of 1012 
m -2, and this number can be increased to 1015-1016 m -2 after strengthen- 
ing by rolling, etc. We assume that the generation of dislocations is the 
dominant mechanism for absorbing the energy of the shock wave as it 
passes through the metal. The generated dislocations can migrate in the 
stress field set up by the shock. Due to the grainy nature of the metal and 
the existence of imperfections such as voids, inclusions, etc., a dislocation 
may be trapped in a random network of imperfections characterized by a 
random set of activation energies. Dislocation transport becomes a succes- 
sion of slips from one trapping site to another. We model this in Section 3.2 
by a random walk on a lattice with a waiting-time distribution governing 
the time between slippings. 
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Some related ideas using absolute rate theory (4) have been applied to 
viscoelastic flows by relating the speed of the dislocation to e x p ( -  U / k T ) ,  
where U is the activation energy to escape a trap and T is the temperature 
of the lattice. 

3.2. Mathematical Concepts 

While we apply a random walk model in a novel manner to analyze 
the formation of a distortion in a solid, all the mathematics of the model 
has been previously discussed. (t,2,5-8) The dislocation motion is governed by 
a master equation with random transition rates. Klafter and Silbey (7) have 
shown by averaging over all configurations that the master equation exactly 
becomes a generalized master equation on a perfect lattice, and Kenkre et 
al.(S) have shown this to be equivalent to the continuous-time random walk 
(CTRW) of Montroll and Weiss. (5) 

In addition to the initial condition, two quantities completely describe 
the CTRW; they are as follows: 

(i) p(l) = Prob. (a single jump is of displacement l). 
(ii) +(t)dt = Prob. [jump occurring in the interval (t, t + dt) given that 

the previous jump occurred at time t -- 0]. 
The probability P(I, t) to be at site ! at time t is most easily given in 

Fourier (1 ~ k) and Laplace (t ~ u) space, i.e., 

/;*(k, u) = [1 -/7(k)qJ*(u) 1 - lu  -1[1 - t~*(u)] (4) 

where 

/~(k) ~ - ~  . . .  ~ exp(ik,  l)p(l) (5) 
i 

and 

~*(u) - - f 0 ~ e x p ( -  ut)~(t) dt (6) 

The mean position, say in the j th  direction, as a function of time is given 
by(6) 

( / j ( t )>--=2 " i '  • / j P ( l , t ) =  - i ] j ~  - ' - I  u(1 - tp*(u)) (7) 

where J l is the inverse Laplace transform, and/~. = -iO~(k)/Okj]k= o is 
the mean single jump distance in the j th  direction. 

Several classes of behavior are possible for (/j(t))  depending on 
whether the moments of p(I) and ~(t) are finite or infinite. If p(l) and if(t) 
are made dependent on each other then even more types of behavior are 
possible. We will discuss two cases. First, if at least two moments of p(i) 
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and one of q~(t) are finite then Gaussian behavior results as t ~ oo, and 

(lj(t)}~ijt (8) 

If, however, /j2 < ~ (for aUj), but ~(t)~t -1-B as t--) o0 with 0 < fl < l, 

then 

[-- foo~176 t)dt= oc (9) 

and 

(/j(t)}--~.t p (10) 

a sublinear growth. It is possible to construct ff(t)'s so Eq. (10) would 
involve logarithmic terms or other slowly varying functions. 

While the analysis leading to Eq. (10) was a key to understanding the 
non-Gaussian nature of transport in amorphous materials similar ideas 
were not unknown to mathematicians. In his book, Feller (9) briefly alludes 
(in small print) at the end of a section on renewal theory to the possibility 
of a sublinear growth in time of the number of renewals. However, Feller (9) 
also remarks on using what are essentially nonexponential q~(t)'s by writing 
"The generality is somewhat deceptive because it is hard to find practical 
examples besides the bus running without a schedule along a circular 
route." Transport in amorphous materials, and damage in metals due to 
high-velocity impacts, are practical examples. 

We now choose explicit forms for p(l) and ~p(t). In three dimensions 
set 

p(O, __ 1, 0)  -- p ( 0 ,  0, _+ 1) = m, 
(11) 

p(1,0,0) = 2fn, p ( -  1,0,0) = 2(1 - f )n  
where 4m + 2n = 1 for conservation of probability. This p(l) describes a 
random walk with a bias for steps in the positive x direction when 2n > 4m 
and f > 1/2. The mean position (/x(t)} will have the same temporal 
behavior as a spherical symmetric model with an outward radial bias. Our 
choice of p(i) in Cartesian coordinates is somewhat easier to manipulate 
than those in spherical coordinates. 

In an unstressed metal we would choose 

with 

(t) = X exp( - Xt) (12) 

X = X0exp(- e/kT) (13) 

where e is a barrier height, T is the temperature of the lattice, and ?t o a 
frequency prefactor. However, if the distortion of the metal, due to the 
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shock propagation, forces the dislocations to experience a distribution g(e) 
of barrier heights, then +(t) will be described by a distribution of rates O(?t), 
i.e., 

(t) = fo~X exp( - Xt)o0 t) d?~ (14) 

If one chooses 

goexp( - e/kTo) 
g(e )=  o 

then it can be shown that as u ~ 0 that 

+ * ( u ) ~ l  - ut+ O(u 2) 

and 

+ * ( u ) ~  1 - (const)u r / to  

Equation (16) will lead, for large t, to 

t 
t 

while Eq. (17) yields 

where 

if c o < e < e  I (15) 

otherwise 

if T > T o (16) 

if T% T o (17) 

(18) 

(lx(t))~h B (19) 

B = T~ To (20) 

Note that the velocity of the dislocation becomes in Eq. (19) 

d(lx(t)) T hr (21) 
dt r0 

Thus there is more resistance to transport at lower temperatures. Such 
behavior has been seen in experiments on the penetration of rigid projec- 
tiles into epoxy resins. ~ 10~ 

4. COMPARISON WITH EXPERIMENT 

As seen in Fig. 1 there is an early stage for imparting momentum into 
the target which is followed by a late stage where axial and radial momen- 
tum obey the same scaling. Initially, we assume T > T o in the early stage, 
and when T settles down to a value below T O there is a crossover to the late 
stage flow. This is characterized by the difference between Eqs. (18) and 
(19). Here we will only discuss the late stage flow. The momentum 
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I(t) transferred to the target involves the mass engulfed which grows as 
( l~( t ) )3~t  3# (since the initial x-direction bias now changes to an outward 
radial bias) and the velocity which scales as t # -  1. Thus 

I ( t ) ~ t  4B-l (22) 

In Fig. 1 I scales as  t 0'468 at late times indicating that fl = 0.367 or in terms 
of temperature that T = 0.367 T O is the condition for the onset of the late 
stage flow. We now see that the conservation law Mv 3~ = const arises from 
the scaling 

(Lv~)  3= const (23) 

where L 3 is proportional to the mass of the projectile, or 

l , -~ t ~ / ( l  + ~) ( 2 4 )  

where l 3 is proportional to the mass engulfed by the spreading deformation. 
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We set fl = a ( l  + a) -1 to match Eqs. (19) and (24). An a of 0.59 corre- 

sponds to a fi of 0.367. 
We can also express the deformation velocity in terms of (lx(t)) using 

Eqs. (19) and (21), as 

d (25) ( l x ( t ) ) _ _ ( l x ( t ) ) (  fl- 1)//3 = ( l x ( t ) )  --l/a 

We interpret Eq. (25) as the way the velocity of the shock decreases with 
penetration distance into the target. The pressure P(t) has units of en- 
ergy/volume, so we can write 

d (lx(t))]2 (lx(t))-2/, (26) 

as the pressure associated with the deformation of the metal with the 
passage of the shock wave. Pressure measurements from a number of 
different experiments are shown in Fig. 3 and agree with Eq. (26) with an 
a ~--- 0 . 5 8 .  (11) In Fig. 2 the penetration of the shock as well as its strength is 
shown as a function of time. The late stage behavior can be understood in 
terms of our model. The early time behavior and crossover regime are not 
as well understood. 
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